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Abstract

We evaluate numerically the probability of linking, i.e. the probability of a given
pair of self-avoiding polygons (SAPs) being entangled and forming a nontrivial
link type L. In the simulation we generate pairs of SAPs of N spherical segments
of radius rd such that they have no overlaps among the segments and each of the
SAPs has the trivial knot type. We evaluate the probability of a self-avoiding
pair of SAPs forming a given link type L for various link types with fixed
distance R between the centers of mass of the two SAPs. We define normalized
distance r by r = R/Rg,01 where Rg,01 denotes the square root of the mean
square radius of gyration of SAP of the trivial knot 01. We introduce formulae
expressing the linking probability as a function of normalized distance r, which
gives good fitting curves with respect to χ2 values. We also investigate the
dependence of linking probabilities on the excluded-volume parameter rd and
the number of segments, N. Quite interestingly, the graph of linking probability
versus normalized distance r shows no N-dependence at a particular value of
the excluded volume parameter, rd = 0.2.

PACS numbers: 82.35.Lr, 61.25.he, 02.10.Kn

1. Introduction

Topological effects among ring polymers have attracted much attention recently in various
research fields such as DNA, proteins and synthetic polymers [1–4]. The topology of a ring
polymer is expressed by a knot type and is kept unchanged under thermal fluctuations once
the ring polymer is formed. Quite interestingly, topological constraints of ring polymers may
lead to nontrivial statistical mechanical and dynamical properties of ring polymers (see for
instance [5] and references therein).

Two simple closed curves can be mutually entangled. The topology of a pair of closed
curves is described by a link type. Some links are depicted in figure 1. In this paper, we
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Figure 1. Trivial link 02
1 and some nontrivial links. Symbol 22

1 denotes the Hopf link.

discuss topological interaction between such two ring polymers in solution that have the trivial
knot type. In particular, we numerically evaluate the probability of two ring polymers forming
a link type which consists of two trivial knots when they are synthesized randomly in good
solvent [6–8]. We model a ring polymer as a self-avoiding polygon (SAP) consisting of N
hard spherical beads of radius rd with unit bond length. We construct a large number of self-
avoiding pairs of SAPs of N beads where the centers of mass of the two SAPs are separated by
a fixed distance R. Here we assume that in each self-avoiding pair of SAPs there is no overlap
among the 2N beads. We also assume that each SAP has the trivial knot type. We define the
linking probability, Plink(R,N, rd), by the probability for such a self-avoiding pair of SAPs of
the trivial knot having the topology of a nontrivial link. If the link is nontrivial, then the two
polygons are mutually entangled so that they cannot be separated by continuous mapping of
the three-dimensional space. More precisely, for such a link type L that consists of two trivial
knots we define the linking probability of link L by the probability that a given self-avoiding
pair of SAPs has the link type L where the centers of mass is separated by R. We denote it by
PL(R,N, rd). Here we recall that each SAP has the trivial knot type. In terms of this notation,
Plink is given by Plink = 1 − P02

1
, where 02

1 denotes the trivial link of two components (see
figure 1).

The linking probability is relevant to the osmotic pressure of a dilute solution of ring
polymers. By measuring the osmotic pressure [9] it was shown that the second virial coefficient
of a ring-polymer solution does not vanish at the theta temperature of the solution of the
corresponding linear polymers. We call it the anomalous second virial coefficient at the theta
temperature of the linear polymer, θl , and denote it by A2(θl). It is given by

A2(θl) = NA/(2M2)

∫ ∞

0
Plink(R,N, 0)4πR2 dR, (1)

where M denotes the molecular weight of a ring polymer and NA is Avogadro’s number
[6, 10, 11]. The A2(θl) was explained theoretically first by evaluating the linking probability
through the topological moment [10, 11], which is the expectation value of the linking number
between two random polygons [12]. However, the theoretical results were not completely
consistent with the experimental data. In fact, the linking number is only a homological
invariant of two spatial curves so that the topological moment only approximately expresses
the topological entropic constraints for pairs of ring polymers in solution.

In this paper, we numerically evaluate linking probabilities of two SAPs of the trivial
knot type, Plink(R,N, rd) and PL(R,N, rd) for various link types L consisting of two trivial
knots, and introduce a formula for expressing them as a function of distance R between the
centers of mass of given two polygons. Here we emphasize that the formula gives good fitting
curves also from the viewpoint of the χ2 values. There are several numerical studies on linking
probabilities [6–8, 13]. However, no fitting formulae in the previous studies are consistent with
the data with respect to the χ2 values. Furthermore, we also investigate the rd -dependence
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and the N-dependence of linking probabilities, and show their nontrivial properties such as in
the case when the excluded volume parameter is large.

The linking probability was numerically evaluated first for random polygons on the cubic
lattice for N � 80 and a prototype of the fitting formula was introduced [6]. Here an ensemble
of random polygons was regarded as a simple model of circular DNA. For circular DNA N is
limited such as N � 50 in experiments. However, for synthetic ring polymers in solution N
can be as large as N = 103. By combining different link invariants, the linking probability
of random polygons has been evaluated for N � 500, and the N-dependence of A2(θl) is
consistent with the simulation result [8]. A good fitting formula of the linking probability
for link type L = 21 was also obtained [8]. Here we recall that random polygons have no
excluded volume. The linking probability was evaluated for SAP consisting of cylindrical
segments of unit length with radius rd = 0.015 for N = 20 [7], and for SAP consisting of
hard beads of radius rd for upto N = 257 and rd = 0.3 [13]. Different fitting formulae were
introduced in [7] and [13]. However, the fitting curves were not good with respect to the χ2

values.
Different definitions of the linking probability have been studied numerically or

theoretically. The linking probability of lattice polygons confined in a finite volume was
studied rigorously and numerically through lattice simulation [14]. The linking number of
two spatial curves has been generalized [15]. The probability of linking in higher dimensions
has also been studied rigorously [16]. Furthermore, some rigorous results on random knotting
of theta curves are obtained recently [17], which can be considered as a generalization of
random linking of two loops.

Linking probability should also be important in DNA. Linking of DNA chains is
particularly relevant in chromosome biology [18]. The end products of replication in
Escherichia coli are two linked circles. Resolution of this topological problem is essential
to ensure cell division. In association with the linking of DNA chains, linking probability of
uniform random polygons in confined space has been studied rigorously and numerically [19].

We define normalized distance r by r = R/Rg,01 where Rg,01 denotes the square root
of the mean square radius of gyration of SAP of the trivial knot 01. Hereafter, we use the
normalized distance r instead of R, i.e. we denote PL(Rg,01r,N, rd) simply by PL(r,N, rd),

and we call the normalized distance r simply distance r.
The content of this paper consists of the following. In section 2 we introduce simulation

methods and fundamental algorithm of the present research, i.e. that of generating self-
avoiding pairs of SAPs forming a given link type. In section 3, we numerically evaluate the
mean square radius of gyration of self-avoiding pairs of SAPs. The simulation result supports
at least partially the validity of the algorithm formulated in section 2. In section 4, we introduce
a fitting formula for the linking probability of link type L as a function of distance r between
the centers of mass of a given self-avoiding pair of SAPs. Applying it to the simulation data
we obtain good fitting curves with respect to χ2 values. We discuss an intuitive derivation of
the formula. In section 5, we discuss the rd -dependence and the N-dependence of the linking
probability. In section 6 we give conclusions.

2. Simulation methods

2.1. Model of SAP

Let us introduce the rod-bead model of SAP [20]. A conformation of the SAP is given by a
sequence of N line segments of unit length. A solid ball of radius rd is placed at each vertex
of the polygon and the balls are not allowed to intersect each other for a valid SAP.
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In the simulation of random linking we consider only such SAPs that have the trivial knot
type.

2.2. Algorithm for generating SAP

To construct random conformations of off-lattice SAP, we introduce the crank-shaft moves
and the bond-interchange moves. Here we note that the former moves are similar to some
parts of the pivot moves for generating self-avoiding polygons on a lattice [21].

The crank-shaft algorithm consists of the following procedures. First we take a
conformation of SAP in three dimensions. Second, we choose randomly two nodes of the
SAP, and we rotate a subchain between the nodes around the axis passing through them. Here
the rotation angle θ ( 0 � θ < 2π ) is chosen randomly with uniform probability. If there is an
overlap among segments in the rotated conformation, then we throw it away and return to the
initial conformation. If the rotated conformation has no overlaps among segments, we accept
it as a valid SAP. We repeat the procedure until the chain reaches a state which is effectively
independent of the initial one.

In addition to the crank-shaft moves, we also apply the bond-interchange moves, by
which possible local correlations may decrease rapidly between the initial and the deformed
conformations of SAP [22, 23]. In every bond-interchange move, we choose two bonds
randomly among all bonds of a given polygon and then interchange them, and search possible
overlaps among the segments of the new conformation. If there is no overlap, we accept the
interchanged conformation as a valid SAP. If they have an overlap, we throw it away and
return to the initial conformation. Through the moves, the alignment of bonds is rearranged
while the directions of the bonds are preserved.

In the simulation we perform the crank-shaft and the bond-interchange moves 2N and
N times, respectively, and we make a new SAP. In fact, according to previous studies, it
is appropriate to perform the crank-shaft moves at least N times for obtaining such a new
conformation that is effectively independent of the initial one [24]. For lattice polygons, it was
shown that the correlation with the initial conformation decreases with respect to the number
of applied moves [24].

After constructing a large number of SAPs we calculate the second order Vassiliev
invariant and the determinant of knots for the SAPs. We then select such SAPs that have the
same set of values of the two knot invariants with the trivial knot. We thus practically select
the SAPs of the trivial knot among the large number of generated SAPs.

2.3. Construction of links of self-avoiding polygons

We define a link by a set of more than or equal to two components of polygons or closed curves
in three dimensions. Two sets of polygons or curves have the same link type if and only if one
of the sets is derived from the other set by a continuous map of the three-dimensional space. If
the two sets of polygons or curves have the same link type, we say that they are topologically
equivalent. A link is called trivial if all the components can be separated by a continuous map
of the three-dimensional space where no segments of the polygons or the curves cut or cross
each other. If a link is not trivial, it is called a nontrivial link. In this paper, we only consider
those links whose components are the trivial knot.

Let us now consider an ensemble of pairs of SAPs in which each SAP consists of N hard
spherical beads with radius rd such that each of the pairs makes a given link type L and has no
overlaps among the segments. Here we assume that in each pair the knot types of the SAPs
are trivial, i.e. each component of the link L has the trivial knot type. We call such a pair of
SAPs a self-avoiding pair of SAPs of link type L or a self-avoiding link L of SAPs, for short.
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Table 1. Values of the two link invariants, the linking number and the Alexander polynomial
evaluated at t = −1 for some simple two-component links.

Link type 02
1 22

1 42
1 52

1 62
1 62

2 62
3

Linking number 0 1 2 0 3 2 3
Alexander polynomial 0 1 2 4 3 6 5

Furthermore, we construct such an ensemble of self-avoiding links of SAPs where the
centers of mass of each pair of SAPs are separated by the same distance r. Here we recall that
symbol r denotes the normalized distance with respect to the square root of the mean square
radius of gyration of the SAP of the trivial knot 01, Rg,01 , i.e. we have r = R/Rg,01 .

Let us formulate the procedure for generating an ensemble of self-avoiding links of SAPs
where each SAP has N beads of radius rd . Here we note that the derived link has 2N segments.
Suppose that we have an ensemble of SAPs of N hard beads of radius rd . In our simulation
we construct 100 000 independent SAPs of the trivial knot type. First, we choose a pair of
SAPs among the ensemble randomly. Second, we put them in such a way that there is a
distance r between the centers of mass of the SAP. Then, for all pairs of beads, we check
whether they overlap or not. If all the pairs have no overlap, the pair of polygons makes a
valid self-avoiding link of SAP. Then, we save its conformation data on computer memory,
and return to the beginning. If there is an overlap then we throw away the pair of SAPs, and
return to the beginning and pick up another pair of SAPs.

We repeat this process a large number of times and we construct an ensemble of self-
avoiding links of SAP. In our simulation, we obtain 100 000 links by the method, eventually.

2.4. Definition of linking probabilities

Let us systematically define the linking probabilities. We define the linking probability of two
SAPs of the trivial knot, Plink(r), by the probability that a given self-avoiding pair of SAPs
of the trivial knot where the centers of mass of the SAPs are separated by a distance r is
topologically equivalent to a nontrivial link.

If a given self-avoiding pair of SAPs is topologically equivalent to the trivial link, we call
it a trivial link of SAPs, otherwise we call it a nontrivial link of SAP. In a nontrivial link of
SAP the two polygons are entangled with each other (see figure 1). Here we have assumed
that each of the two SAPs has the trivial knot type.

Let L denote such a link that consists of two trivial knots. We define the linking probability
of link type L,PL(r), by the probability that a given self-avoiding pair of SAPs of the trivial
knot with distance r between the centers of mass is topologically equivalent to link type L.

The linking probabilities are functions of the number of segments N and the radius rd

of hard spherical beads. Therefore, we also denote PL(r) and Plink(r) more specifically by
PL(r,N, rd) and Plink(r,N, rd), respectively.

Through simulation we numerically evaluate linking probabilities of SAP of the trivial
knot. We assume that all configurations of self-avoiding links of SAPs with the trivial knot have
statistically the same probability of appearance. We thus calculate the linking probabilities
by

Pi(r,N, rd) = Mi

M
, i = L or link, (2)

where L is a link consisting of two trivial knots, and ML and Mlink are the number of self-
avoiding links with link type L and that of nontrivial links, respectively. Here M is the total
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number of self-avoiding links of SAP of the trivial knot generated in the simulation. We recall
that M = 100 000 in our simulation.

Calculating link invariants we can practically determine the link type of a given
configuration of the self-avoiding link. We use two link invariants called the linking number
and the Alexander polynomial evaluated at t = −1. For some simple links we can distinguish
them by the values of the two link invariants (see table 1). Thus, if the fraction of rather
complicated links is small, we can evaluate the linking probabilities quite accurately.

Hereafter in this paper, we abbreviate the superscript 2 in the symbols of links. For
instance, we denote the Hopf link 22

1 simply by 21.

3. Mean square radius of gyration of self-avoiding links of SAP

In order to check the validity of the algorithm for generating self-avoiding links of SAP,
we now numerically evaluate the mean square radius of gyration for self-avoiding pairs of
SAPs.

3.1. Mean square radius of gyration of SAPs

Let us first consider an ensemble of SAPs consisting of N segments of hard spherical beads
with radius rd . Suppose that we can select such SAPs from the ensemble that have the trivial
knot type 01. Then, we take the average of some quantity A over all the conformations of
SAPs of the trivial knot 01. We denote it by the symbol 〈A〉01 . Let rj for j = 1, 2, . . . , N be
the position vectors of the vertices of a given SAP. We define R2

g,N by

R2
g,N = 1

2N2

N∑
j=1

N∑
k=1

(rj − rk)
2. (3)

Then, the mean square radius of gyration of SAP with the trivial knot type 01 is given by the
following:

R2
g,01

= 〈
R2

g,N

〉
01

= 1

2N2

N∑
j=1

N∑
k=1

〈(rj − rk)
2〉01 . (4)

The square root of the mean square radius of gyration, Rg,01 , is given by Rg,01 =
√〈

R2
g,N

〉
01

.
Here we note that equation (4) is also expressed as follows:

R2
g,01

= 1

N

N∑
j=1

〈(rj − rG,01)
2〉01 ,

where rG,01 = ∑N
k=1 rk/N denotes the center of mass of the SAP.

The estimates of the mean square radius of gyration of SAP with the trivial knot type are
plotted against the number of segments, N, in figure 2. The fitting curves are given by the
formula

R2
g,01

= CN2ν . (5)

6



J. Phys. A: Math. Theor. 42 (2009) 105001 N Hirayama et al

Figure 2. R2
g,01

versus N. We recall that R2
g,01

denotes the mean square radius of gyration for
equilateral SAPs of hard spherical beads with radius rd having the trivial knot type. The parameters
(C, 2ν) of the fitting curves of formula (5) which are given by (0.073, 1.04) for rd = 0, (0.072,
1.05) for rd = 0.05, (0.068, 1.09) for rd = 0.10, (0.067, 1.13) for rd = 0.15, (0.071, 1.16) for
rd = 0.20, (0.077, 1.18) for rd = 0.25 and (0.086, 1.19) for rd = 0.30.

3.2. The estimates of the mean square radius of gyration for self-avoiding links of SAP

Let us now consider a set of self-avoiding pairs of SAPs of N segments. Here we do not specify
their link types as far as each SAP has the trivial knot 01. Suppose that we have a self-avoiding
pair of SAPs of N segments. We denote by rj the position vector of the j th vertex of the first
polygon for j = 1, 2, . . . , N , and that of the second polygon for j = N + 1, N + 2, . . . , 2N ,
respectively. Then, the center of mass of the self-avoiding pair, rG,2N , is given by

rG,2N = 1

2N

2N∑
j=1

rj . (6)

We denote by R2
g,all(01,01)

the mean square radius of gyration for a self-avoiding pair of
SAPs where the link type is arbitrary except that each of the SAP should have the trivial knot
type 01. We define it by the following:

R2
g,all(01,01)

= 〈
R2

g,2N

〉01,01

all

= 1

2N

〈
2N∑
j=1

(rj − rG,L)2

〉01,01

all

. (7)

Here the symbol 〈A〉01,01
all denotes the average of quantity A over all the configurations of the

self-avoiding link of SAP of such an arbitrary link type in which each SAP has the trivial knot
type 01.

The estimates of R2
g,all(01,01)

are plotted against the number of segments, N, in figure 3.
The fitting curves are given by the same formula (5).

Let us now discuss the relation between the mean square radius of gyration of SAPs of the
trivial knot, R2

g,01
, and that of self-avoiding links of SAPs with any link type where each SAP

has the trivial knot, R2
g,all(01,01)

. We first consider the case of no excluded volume, i.e. rd = 0.
We denote by rG,1 and rG,2 the centers of mass of the first and second polygons, respectively.
Then, R2

g,all(01,01)
is expressed in terms of the centers of mass of the two polygons as follows:

R2
g,all(01,01)

= 〈
R2

g,N

〉01,01

all
+ 1

4 〈(rG,1 − rG,2)
2〉01,01

all . (8)
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Figure 3. The mean square radius of gyration for self-avoiding pairs of SAPs of hard spherical
beads with radius rd , R2

g,all(01,01), plotted against N for various values of rd . Here the excluded
volume parameter rd is given by rd = 0.0, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30.

Here the center of mass of the self-avoiding link of SAP is given by

rG,L = 1
2 (rG,1 + rG,2).

If we set rG,1 = rG,2 = 0, we obtain

R2
g,all(01,01)

= 〈
R2

g,N

〉01,01

all
. (9)

Thus, if the centers of mass of random polygons are fixed at the origin, the mean square radius
of gyration of pairs of random polygons of the trivial knot, R2

g,all(01,01)
, is equal to that of one

of the two random polygons of the trivial knot which compose a link of two trivial knots,〈
R2

g,N

〉01,01

all
. The latter corresponds to the mean square radius of gyration of random polygons

with the trivial knot, R2
g,01

. Therefore, if the centers of mass of random polygons are fixed at
the origin, we have the following equality for random polygons:

R2
g,all(01,01)

= R2
g,01

. (10)

In short, if the excluded volume is zero and the centers of mass of random polygons are fixed
at the origin, then the self-avoiding links and the SAPs have the same mean square radius of
gyration.

If the excluded volume is non-zero, however, the mean square radius of gyration of a
self-avoiding link of SAP should be larger than that of the SAP even if the centers of mass of
SAPs are fixed at the origin. That is, we should have R2

g,all(01,01)
> R2

g,01
if the centers of mass

of SAPs are fixed at the origin. The average size of self-avoiding links should be larger than
that of SAP due to the effective repulsion among segments arising from the excluded volume.

In figure 4, the ratio R2
g,all(01,01)

/
R2

g,01
is plotted against the number of segments of SAP,

N. We confirm that the ratio is given by 1.0 if the excluded volume is zero (rd = 0), and
also that the ratio becomes greater than 1.0 if the excluded volume is non-zero (rd > 0).
Furthermore, the N-dependence of the ratio is very small. The graph of the ratio versus N is
almost flat. The numerical result suggests that the algorithm of generating self-avoiding links
of SAP should be valid.

8
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Figure 4. Ratio of the mean square radius of gyration of self-avoiding pairs of SAPs of the
trivial knot to that of SAP of the trivial knot, R2

g,all(01,01)/R
2
g,01

, versus the number of segments,
N. Here K is given by the trivial knot, and the excluded volume parameter rd is given by
rd = 0.0, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30.

4. Formula of the linking probability

4.1. Good fitting curves with respect to χ2 values

Let us introduce a fitting formula for the linking probability as a function of distance r between
the centers of mass of SAP

Pi(r) = exp(−αrν1) − C exp(−βrν2), i = L or link, (11)

where C, α, β, ν1 and ν2 are fitting parameters. An intuitive derivation of the fitting formula
(11) will be given in subsection 4.2. We note that a similar formula was introduced for the
linking probability of the Hopf link where ν1 and ν2 are fixed as ν1 = ν2 = 3 [8].

We have applied formula (11) to the data points of Plink(r) and PL(r) obtained through
simulation. The fitting curves are depicted together with the data points in figure 5. Each
panel contains five fitting curves for Plink, P21 , P41 , P51 and Pothers, which correspond to the
linking probabilities of the following link types: all the nontrivial links, 21, 41, 51, and all the
nontrivial links other than 21, 41 and 51, respectively.

The graphs given in figure 5 clearly show that formula (11) gives good fitting curves to
the data points for N = 256. Similarly, formula (11) also gives good fitting curves to the data
points for the cases of N = 32, 64 and 128. Furthermore, we have obtained good χ2 values
at least for the cases of rd � 0.20. Here we remark that there are 31 data points for one fitting
curve. The best estimates of the five parameters C, α, β, ν1 and ν2 together with the χ2 values
are listed in tables 2 and 3. The χ2 values are sufficiently small for rd � 0.20.

Therefore, we conclude that formula (11) reproduces the simulation results of PL(r) and
Plink(r) for the cases of rd � 0.20.

Let us give a remark. Generalizing (11), we introduce another fitting formula as follows.
For i = L or link we have

Pi(r) = exp(−αr3) − C exp(−βrν1) + D exp(−γ r3). (12)

Here we remark that it has six fitting parameters.
Applying formula (12) to the same data points of Plink(r,N, rd), i.e. to the cases of

N = 32, 64, 128 and 256 with the seven different values of excluded volume parameter rd

from rd = 0.0 to 0.30, we have obtained good fitting curves to all the data including the case

9



J. Phys. A: Math. Theor. 42 (2009) 105001 N Hirayama et al

(a) (b)

(c) (d)

Figure 5. Linking probability PL(r, N, rd ) with link type L versus distance r for the SAP of nodal
number N = 256 with the excluded volume rd = 0.0, 0.1, 0.2, 0.3. Data from our simulation
are represented by these points, where open circles are probabilities of nontrivial links Plink and
closed triangles, open diamonds and closed inverted triangles are the probabilities P21 , P41 , P51 ,
respectively, and the open crosses are the probabilities Pothers with more complicated link types,
and solid lines are fitting curves by equation (11).

of large excluded volume such as rd = 0.25 and 0.30. For all the 28 cases, χ2 values are given
by less than about 30. Thus, they are good also with respect to χ2 values. Here we note that
in the case of formula (11) the χ2 values for rd = 0.25 and 0.30 are given by larger than 150.

For an illustration, the best estimates of the six fitting parameters of formula (12) for
Plink(r,N, rd) with N = 256 are given in table 4 for the seven values of the parameter rd from
rd = 0.0 to 0.30.

4.2. Intuitive derivation of formula (11)

Let us discuss an intuitive derivation of the linking probability of Plink(r) for rd = 0, i.e. the
probability of a given pair of random polygons separated by distance r between the centers
of mass being equivalent to a nontrivial link [8]. The derivation is not rigorous but may give
some hints to the reason why formula (11) gives good fitting curves.

Let us now discuss the large r-dependence of Plink(r) for rd = 0. We assume an ensemble
of random polygons of N nodes.

(i) Choose a pair of N-noded polygons, randomly, from the ensemble. Place the two polygons
in a way such that their centers of mass is of a distance r.

10
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Table 2. Parameters of linking probability Plink(r) and the χ2 values with respect to equation (11). N is the nodal
number of a SAP and rd is the size of the excluded volumes. The fitting curves of Plink(r) have five parameters
denoted by α, ν1, C, β and ν2 of equation (11).

rd α ν1 C β ν2 χ 2

N = 32
0.00 0.552 ± 0.008 2.319 ± 0.021 0.260 ± 0.001 1.595 ± 0.092 2.401 ± 0.054 3.719
0.05 0.568 ± 0.008 2.284 ± 0.021 0.267 ± 0.001 1.692 ± 0.094 2.354 ± 0.052 7.139
0.10 0.639 ± 0.008 2.192 ± 0.018 0.309 ± 0.001 1.983 ± 0.091 2.330 ± 0.044 8.670
0.15 0.790 ± 0.008 2.050 ± 0.017 0.396 ± 0.002 2.472 ± 0.095 2.197 ± 0.034 9.198
0.20 1.047 ± 0.007 1.879 ± 0.012 0.506 ± 0.002 3.757 ± 0.113 2.175 ± 0.028 26.76

N = 64
0.00 0.425 ± 0.005 2.476 ± 0.016 0.184 ± 0.001 1.665 ± 0.091 2.816 ± 0.079 7.502
0.05 0.440 ± 0.005 2.449 ± 0.016 0.195 ± 0.001 1.732 ± 0.091 2.772 ± 0.074 11.19
0.10 0.526 ± 0.006 2.320 ± 0.018 0.255 ± 0.001 1.831 ± 0.091 2.403 ± 0.054 7.616
1.50 0.735 ± 0.007 2.063 ± 0.015 0.369 ± 0.002 2.599 ± 0.097 2.239 ± 0.037 10.67
0.20 1.016 ± 0.006 1.870 ± 0.012 0.496 ± 0.002 3.935 ± 0.118 2.201 ± 0.029 27.62

N = 128
0.00 0.327 ± 0.003 2.667 ± 0.014 0.126 ± 0.001 1.828 ± 0.116 3.186 ± 0.116 25.63
0.05 0.344 ± 0.003 2.632 ± 0.015 0.139 ± 0.001 1.815 ± 0.108 3.085 ± 0.104 18.08
0.10 0.458 ± 0.005 2.400 ± 0.015 0.213 ± 0.001 2.059 ± 0.099 2.618 ± 0.065 6.301
0.15 0.693 ± 0.006 2.093 ± 0.014 0.350 ± 0.002 2.689 ± 0.100 2.274 ± 0.039 14.32
0.20 1.008 ± 0.006 1.870 ± 0.011 0.496 ± 0.002 4.061 ± 0.121 2.209 ± 0.029 43.41

N = 256
0.00 0.258 ± 0.002 2.870 ± 0.013 0.085 ± 0.001 2.257 ± 0.178 3.761 ± 0.172 43.42
0.05 0.277 ± 0.002 2.812 ± 0.013 0.098 ± 0.001 2.152 ± 0.154 3.498 ± 0.146 33.30
0.10 0.408 ± 0.004 2.491 ± 0.014 0.184 ± 0.001 2.206 ± 0.111 2.752 ± 0.075 12.96
0.15 0.678 ± 0.005 2.104 ± 0.013 0.340 ± 0.002 2.920 ± 0.109 2.309 ± 0.041 12.20
0.20 1.001 ± 0.005 1.859 ± 0.011 0.493 ± 0.002 4.289 ± 0.127 2.241 ± 0.029 51.30

(ii) If they are unlinked, they should be unlinked when they are placed with distance r + dr

between the centers of mass. If they are linked, then they may become unlinked when
they are placed with distance r + dr between the centers of mass.

(iii) The decrease dPlink(r) should be approximately proportional to the product of Plink(r)

(being linked) and the partial volume 4πr2 dr of the configuration space

dPlink(r) = −C	Plink(r) × 4πr2 dr. (13)

(iv) Integrating the above differential equation we have

Plink(r) = Plink(0) exp(−αr3),

where α = 4πC	/3.

If we assume that constant C	 depends on r as C	(r) = C0r
ν1−3, then by integration we

have

Plink(r) = Plink(0) exp(−αrν1),

where α = 4πC0/ν1.
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Table 3. Parameters of linking probability P21 (r) with the link type 21 and the χ2 values with respect to
equation (11). N is the nodal number of a SAP and rd is the size of the excluded volumes. The fitting curves
of P21 (r) have five parameters denoted by α, ν1, C, β and ν2 of equation (11).

rd α ν1 C β ν2 χ 2

N = 32
0.00 0.590 ± 0.012 2.249 ± 0.027 0.598 ± 0.001 1.376 ± 0.045 2.330 ± 0.023 3.959
0.05 0.604 ± 0.012 2.222 ± 0.026 0.593 ± 0.002 1.408 ± 0.046 2.302 ± 0.023 10.07
0.10 0.669 ± 0.012 2.148 ± 0.024 0.572 ± 0.002 1.558 ± 0.051 2.270 ± 0.024 9.455
0.15 0.817 ± 0.011 2.017 ± 0.021 0.553 ± 0.002 1.998 ± 0.063 2.176 ± 0.023 13.26
0.20 1.075 ± 0.008 1.847 ± 0.014 0.577 ± 0.002 3.217 ± 0.089 2.096 ± 0.023 25.26

N = 64
0.00 0.483 ± 0.011 2.315 ± 0.028 0.669 ± 0.001 1.125 ± 0.032 2.439 ± 0.022 11.34
0.05 0.500 ± 0.010 2.322 ± 0.027 0.659 ± 0.001 1.162 ± 0.033 2.446 ± 0.022 9.855
0.10 0.572 ± 0.012 2.240 ± 0.027 0.609 ± 0.001 1.287 ± 0.042 2.342 ± 0.023 9.459
0.15 0.769 ± 0.012 2.021 ± 0.022 0.564 ± 0.002 1.827 ± 0.060 2.132 ± 0.023 10.89
0.20 1.066 ± 0.008 1.809 ± 0.013 0.576 ± 0.002 3.345 ± 0.090 2.108 ± 0.023 19.12

N = 128
0.00 0.419 ± 0.010 2.424 ± 0.030 0.749 ± 0.001 0.942 ± 0.025 2.533 ± 0.019 20.37
0.05 0.437 ± 0.010 2.398 ± 0.029 0.730 ± 0.001 0.976 ± 0.026 2.541 ± 0.020 15.10
0.10 0.537 ± 0.011 2.247 ± 0.026 0.649 ± 0.001 1.198 ± 0.034 2.409 ± 0.022 8.701
0.15 0.750 ± 0.011 2.019 ± 0.021 0.576 ± 0.002 1.771 ± 0.055 2.155 ± 0.022 21.22
0.20 1.070 ± 0.008 1.799 ± 0.013 0.583 ± 0.002 3.370 ± 0.089 2.104 ± 0.022 33.89

N = 256
0.00 0.383 ± 0.010 2.484 ± 0.032 0.821 ± 0.001 0.881 ± 0.021 2.626 ± 0.017 16.73
0.05 0.399 ± 0.011 2.457 ± 0.032 0.798 ± 0.001 0.847 ± 0.022 2.598 ± 0.017 17.40
0.10 0.518 ± 0.011 2.262 ± 0.026 0.685 ± 0.001 1.108 ± 0.030 2.475 ± 0.021 10.09
0.15 0.766 ± 0.011 1.984 ± 0.020 0.587 ± 0.002 1.836 ± 0.054 2.154 ± 0.021 13.41
0.20 1.083 ± 0.007 1.773 ± 0.013 0.586 ± 0.002 3.487 ± 0.090 2.101 ± 0.022 37.11

Table 4. Six fitting parameters of Plink(r) and the χ2 values with formula (12).

rd α C β ν D γ χ 2

N = 256
0.00 0.55 ± 0.05 0.75 ± 0.05 0.75 ± 0.04 3.08 ± 0.03 0.67 ± 0.05 0.20 ± 0.01 12.37
0.05 0.56 ± 0.05 0.74 ± 0.05 0.76 ± 0.05 3.06 ± 0.03 0.64 ± 0.05 0.20 ± 0.01 9.13
0.10 0.61 ± 0.05 0.67 ± 0.04 0.84 ± 0.07 2.93 ± 0.05 0.48 ± 0.04 0.21 ± 0.01 6.92
0.15 0.75 ± 0.09 0.69 ± 0.02 0.99 ± 0.18 2.57 ± 0.11 0.35 ± 0.02 0.23 ± 0.01 14.96
0.20 1.12 ± 0.07 0.73 ± 0.01 1.60 ± 0.15 2.41 ± 0.08 0.24 ± 0.01 0.26 ± 0.01 16.86
0.25 1.44 ± 0.05 0.77 ± 0.01 2.33 ± 0.10 2.34 ± 0.05 0.15 ± 0.01 0.30 ± 0.01 20.45
0.30 1.73 ± 0.04 0.81 ± 0.01 3.09 ± 0.09 2.45 ± 0.03 0.14 ± 0.01 0.37 ± 0.01 30.02

The above intuitive argument gives the first term of formula (11). We can derive the
second term if we consider contributions from other link conditions in the right-hand side of
(13). The second terms can be considered as a correction to the first term of (11).
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We find in table 2 that the fitting parameter C of formula (11) for Plink(r) becomes very
small for random polygons with rd = 0 and large N. Furthermore, ν1 becomes close to 3.0 as
N increases. Thus, the above intuitive argument should be appropriate for random polygons
of very large N and small rd .

By a similar intuitive argument we can derive formula (11) also for other link types. For
instance, in the Hopf link case, we obtain the difference of two exponentials as follows [25]:

P21(r) = B1 exp(−β1r
3) − B2 exp(−β2r

3). (14)

Let us recall the derivation of formula (14), [25]. We first assume the following:

(i) If a given pair of polygons with distance r between the centers of mass gives the trivial
link, then it should also be trivial when the distance between the centers of mass is given
by r + dr .

(ii) If a given pair of polygons with distance r between the centers of mass gives the Hopf
link, then it may become a different link when the distance between the centers of mass
is given by r + dr .

(iii) If the pair is neither the trivial nor the Hopf link, it may become a Hopf link when the
distance between the centers of mass is given by r + dr .

Then we have

dP21(r) = −γ1P21(r) dv + γ2(Plink(r) − P21(r)) dv, (15)

where v = 4πr3/3, and γ1 and γ2 are constants. By integrating (15) we have (14).
Similarly, if we assume a sequence of links from simple to complex links, through similar

intuitive arguments, the linking probability can be expressed as a sum of several exponential
terms of r3.

5. Dependence of the linking probabilities on the excluded volume rd and the number

of segments N

5.1. Dependence of linking probability on the excluded volume

Let us now discuss the rd -dependence and the N-dependence of the linking probabilities PL

and Plink which we have investigated for the simulation data.
We have found several features of the rd -dependence of Plink(r). The estimates of Plink(r)

of SAP containing 256 nodes are shown against distance r for various values of rd in figure 6.
We have the following observations:

(i) The number of nontrivial links decreases as the excluded volume parameter rd increases.
(ii) For rd � 0.20, a peak appears in the graph of Plink(r) as a function of distance r.

(iii) The height and the position of the peak does not change for rd � 0.25.
(iv) The probability Plink(r) does not vanish even for rd = 0.30.

Let us explain observation (i) as follows. The effective repulsions among the segments
of SAP arising from the excluded volume become stronger as parameter rd increases. The
segments of two SAPs are effectively repelled by each other so that the range of the distribution
function of the SAPs should be extended and the local density of segments of SAPs should
decrease. Thus, the degree of entanglement between the two SAPs should also decrease with
respect to parameter rd , and the linking probability should become smaller. Here we have
assumed that the degree of entanglement between two SAPs should be proportional to the
local density of segments of the SAPs.
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Figure 6. Linking probability Plink(r, N, rd ) versus distance r for SAPs of N = 256 with the following seven values
of the excluded volume parameter rd : rd = 0.0 (open circles); 0.05 (closed triangles); 0.10 (open squares); 0.15
(closed circles); 0.20 (open triangles); 0.25 (closed squares); 0.30 (open crosses). Solid lines are fitting curves given
by formula (11).

(a) (b)

(c) (d)

Figure 7. Linking probability Plink(r, N, rd ) versus distance r for SAPs of N = 32, 64, 128 and 256 with four values
of the excluded volume parameter: (a) rd = 0.0; (b) rd = 0.1; (c)rd = 0.2; (d) rd = 0.3. Simulation data of the
probability for N = 32, 64, 128 and 256 are represented by open circles, closed triangles, open diamonds and closed
inverted triangles, respectively. Solid lines are given by formula (11).

We remark that observation (i) is also consistent with the fact that the probability for
SAP to be a nontrivial knot becomes smaller for off-lattice SAP when the excluded volume
parameter rd increases [20].
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(a) (b)

(c) (d)

Figure 8. Linking probability of link type 21 (P21 ) versus distance r for the SAP of N = 32, 64, 128 and 256 with
four values of the excluded volume parameter: (a) rd = 0.0; (b) rd = 0.1; (c) rd = 0.2; (d) 0.3. Data points of
the probabilities for N = 32, 64, 128 and 256, are represented by open circles, closed triangles, open diamonds and
closed inverted triangles, respectively. Solid lines are given by formula (11).

We can explain observation (ii) from the behavior of the linking probability of some link
types (PL) as shown in figure 5. Here we find that for rd � 0.2 the most nontrivial link is given
by the Hopf link, 21. It should be difficult to generate complicated links when the effective
repulsive force of the excluded volume acts on the segments of SAPs strongly. Therefore, the
profile of Plink(r) with respect to distance r is almost the same as that of P21(r). We remark
that the graph of P21(r) has a peak, in the same way as the graph of Plink(r) has a peak for
rd � 0.2.

It is suggested from observation (iii) and figure 5 that the fraction of the Hopf link (21)

should be nonzero even if rd reaches its limit: rd → 0.5.

5.2. N-dependence of the linking probabilities

Let us discuss the N-dependence of the linking probabilities, Plink(r) and PL(r). The linking
probability Plink(r) and P21(r) for various N is plotted against distance r in figures 7 and 8,
respectively.

One of the most important features of figure 7 is that when rd = 0.2 probability Plink(r)

has the same value for all values of N. The N-independence of Plink(r) for rd = 0.2 is quite
remarkable. Moreover, in figure 8 the linking probability of the Hopf link, P21(r), has also the
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Figure 9. Linking probability Plink(r = 0.00) versus the nodal number N. The distance r between SAP is fixed as
r = 0.00. These points represent our simulation results. Where the excluded volume r = 0.00 (open circles), 0.05
(closed triangles), 0.10 (open diamonds), 0.15 (closed inverted triangles), 0.20 (open crosses), 0.25 (closed diamonds)
and 0.30 (+s).

Figure 10. Linking probability P21 (r = 0.00) versus the nodal number N. The distance r between SAP is fixed as
r = 0.00. These points represent our simulation results. Where the excluded volume rd = 0.00 (open circles), 0.05
(closed triangles), 0.10 (open diamonds), 0.15 (closed inverted triangles), 0.20 (open crosses), 0.25 (closed diamonds)
and 0.30 (+s).

same N-independence for rd = 0.2. In fact, we find that PL(r) for all other links L investigated
show the same N-independence for rd = 0.2.

In the case of rd < 0.20, the graph of Plink(r) strongly depends on the number of segments,
N. In fact, Plink(r) increases as N increases. For rd = 0.30 the N-dependence of Plink(r) is
weak but not zero. However, it is much weaker than that of rd < 0.2. The N-dependence
of the linking probability can be explained by the hypothesis that the longer are the SAP the
more likely they entangle with each other.

Let us now discuss the N-dependence of Plink(r = 0.00). It is the probability when
both the two centers of mass of SAPs are located at the origin. In figure 9 the estimates of
Plink(r = 0.00) are plotted against the number of segments N for seven values of rd such
as rd = 0.00, 0.05, 0.10, 0.15, 0.20, 0.25 and 0.30, respectively. Interestingly we find that
Plink(r = 0.00) increases with respect to N for rd �= 0.2, but not for rd = 0.2. The probability
Plink(r = 0.00) does not depend on N for the case of rd = 0.2.

Furthermore, let us discuss the N-dependence of P21(r = 0.00), the linking probability
of the Hopf link at zero distance between the centers of mass of SAPs. The estimates
of P21(r = 0.00) are shown against N in figure 10. Here we have three types of the N-
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dependence: for rd < 0.20, the probability P21(r = 0.00) decreases as N increases. This
behavior is different from that of Plink(r = 0.00). For rd = 0.20, the probability P21(r = 0.00)

does not depend on N. For rd > 0.2, the probability P21(r = 0.00) increases with respect
to N.

6. Conclusions

Through simulation using topological invariants of knots and links we have numerically
evaluated the linking probability for a given pair of SAPs for various link types. In the
simulation, we have assumed that every pair of SAPs should have no overlaps among spherical
segments of radius rd and each of the SAPs should have the trivial knot type.

More precisely, we define the linking probability of a link type L consisting of two trivial
knots by the probability that the topology of a given self-avoiding pair of SAPs is equivalent to
link type L. We have evaluated the linking probability of link type L as a function of distance
r between the centers of mass of the two SAPs of N segments.

We have introduced two formulae expressing the linking probability as a function of
distance r. They have five and six parameters, respectively. Both of them give good fitting
curves with respect to χ2 values.

We have also investigated the dependence of linking probabilities on the excluded volume
parameter rd and the number of segments, N. Quite interestingly, the graph of linking
probability versus distance r shows no N-dependence at a particular value of the excluded
volume, rd = 0.2.
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